成果信息
利用BP神经网络对天然气吸收塔脱硫过程建模并以该模型为被控对象进行脱硫过程控制仿真实验,根据控制误差和性能指标函数不断更新优化权值,直到得到最优控制信号,实现脱硫过程的最优控制。天然气吸收塔脱硫过程复杂,表现不确定性、非线性、强耦合性、动态性等特点,难以建立精确的数学模型,控制难度较大。针对目前脱硫过程控制方法控制精度低,时滞大、不稳定等问题提出一种基于UKF和ADDHP的天然气吸收塔脱硫过程控制方法,不仅保证了控制系统的稳定性和控制精度,还降低了响应时间,真正实现了吸收塔脱硫过程的实时精确控制。)
背景介绍
本发明提供了一种基于UKF与ADDHP的天然气吸收塔脱硫过程控制方法。)
应用前景
-)